ABB industrial drives

Application guide

Adaptive Programming

Adaptive Programming {0319}
In the drive - L%y Download to drive - On PC
¥ Program tools ¥ Functional Blocks
Add Subtract Multiply Divide Abs Filter
3 @ |
() —
Undo Redo Open m L/
1 Y
L/ L/ L/ L/ L/
save e « [Arithmetic blocks (8) I | egical blocks (7) | setection biocis 7)
Constants ‘ 110
110 X Start control
Add
Actual values Speed control
Status E D Frequency control
Data storage Inz 3 Tarque control
—— Limitations

Power and productivity ‘l .! I!
for a better world™ "l. I.

List of related manuals

Drive firmware manuals Code (English)
ACS880 primary control program firmware manual 3AUA0000085967
ACS380 machinery control program firmware 3AXD50000029275
manual

Option manuals

Drive composer start-up and maintenance PC tool 3AUA0000094606
User’s manual

You can find manuals and other product documents in PDF format on the Internet. See section
Document library on the Internet on the inside of the back cover. For manuals not available in
the Document library, contact your local ABB representative.

http://search.abb.com/library/ABBLibrary.asp?DocumentID=3AUA0000045495&LanguageCode=en&DocumentPartId=1&Action=LaunchDirect
https://library.e.abb.com/public/c2ce832ae8fd136ec1257db4005476da/EN_ACS880_FW_manual_K_A4.pdf
https://library.e.abb.com/public/efc5a71e9e130738c1257e120029cd4c/EN_DriveCompPC-tool_UM_H_A4.pdf
https://abblibrary.s3.amazonaws.com/public/13186859b52a42a9a101a5392dc69d8e/EN_ACS880_FW_manual_L_A4.pdf

Application guide

Adaptive Programming

Table of contents L.J
© 2016 ABB Oy. All Rights Reserved. 3AXD50000028574 Rev C
EN

EFFECTIVE: 2016-03-14

Table of contents 5

Table of contents

Listof related manuals 2

1. Introduction to the guide

Contents of this chapter 9
Applicability e e 9
Compatibility e 9
Safety instructions e 10
Target audieNCeo e 10
Purpose of the guide 10
Contentsof theguide 10
Related documents 10

2. Adaptive programming

Contents of this chapter 11
Overview of Adaptive programmingt e 11
Creating @ SEQUENCE Program oottt it et e et e et e e e 12
Connecting the Adaptive program to a drive application 12
Enabling/disabling Adaptive program 12
Executing the Adaptive program 13
Creating abackup/restore e 13

3. Using PC tool interface

Contents of this chapter 15
Adaptive programming user interface 15
Base and sequence programs 17
Program tools 18
Functional blocKs 18
INPULS . 19
OUBPULS . oo 21
Sequence states 22
State transition 22

4. Creating an Adaptive program

Contents of this chapter 23
Creating @ base programttt e 24
Creating @ SEQUENCE Program oottt i e et e e e e e e e et e 26
Downloading the adaptive program 28

5. Program elements

Contents of this chapter 31
SYSteM INPULS . . 32
Parameter inputs 32

CONStaNtS . .. 32

6 Table of contents

INPULS/OUtPULS . . o 32
Actual values 33
StatUS . . e 33
Data storageo 33
SyStemM OUIPULS oo e 33
Parameter outputs 33
O 34
Start CoNtrol e 34
Speed CoNtrol 34
Frequency control e 35
Torque CoNtrol 35
Limitations e e 35
EVeNtS o e 35
Process PID 35
Function block specifications 36
A L e 36
A . 37
ANDD L 38
Bit get . .. e 39
Bitwise ANDo 41
Bitwise OR e e 42
Bitwise XOR e 43
DIVIdE . .o 44
EqQUal .. 45
FIer e e 46
Greaterthan 47
Less than 48
Limit o 49
MaX o 50
Y 51
MURIDIY . e e 52
NOT 53
O R 54
P 55
RaMD . e 57
Select boolean e 59
Select value 60
Set bits 0-7 . . . o 61
Set bits 8-15 . . o 62
SQUAIE TO0t . . .o 63
SR 64
SUDraCt . . 65
Switch boolean 66
Switch Value e 68
T L 70
Trgger OWN . .o 73
TGO UD . ettt e e e e 74
T Off o 75
T 0N e 76

Table of contents 7

Further information

Product and service inQUIries e 79
Product training 79
Providing feedback on ABB Drives manualst 79

Documentlibrary onthe Internet 79

8 Table of contents

Introduction to the guide 9

Introduction to the guide

Contents of this chapter

This chapter gives general information on the guide.

Applicability

This guide applies to the following drive programs and software. For version details,
see the Compatibility list:

* ACSB880 primary control program

* ACS380 machinery control program

* Drive composer pro

Compatibility

This guide complies with the following drive application programs in which the
Adaptive programming feature is included.

Drive application programs | Version Other details

ACS880 primary control 2.20 or later -

program

ACS380 machinery control 1.60 or later -

program

Drive composer pro 1.9 or later Microsoft Windows 7 or newer

Note: The available features may differ depending on both the Drive composer pro
and drive versions

10 Introduction to the guide

Safety instructions

Follow all safety instructions delivered with the drive.

* Read the complete safety instructions before you install, commission, or use the
drive. The complete safety instructions are delivered with the drive as either part
of the Hardware manual, or, in the case of ACS880 multidrives, as a separate
document.

* Read the software function specific warnings and notes before changing the
default settings of the function. For each function, the warnings and notes are
given in the Firmware Manual in the subsection describing the related user
adjustable parameters.

Target audience

This guide is intended for people who design, commission, or operate the drive
system.

Purpose of the guide

This guide is used together with the firmware manual of the drive application
program.The firmware manual contains basic information on drive parameters
including the parameters needed for Adaptive programming.

This guide gives the following information on Adaptive programming:
* what is Adaptive programming

* how to build a adaptive program

* how the function blocks operate

* how to use the system inputs and outputs

* how to use the program states

Contents of the guide
This guide contains the following chapters:
Adaptive programming provides the overview on Adaptive programming.

Using PC tool interface describes the user interface elements for creating an
Adaptive program in the PC tool software.

Creating an Adaptive program describes how to create a base program and a
sequence program. It also describes how to download the program to the drive.

Program elements describes the function blocks used for Adaptive programming.

Related documents

See the List of related manuals on the inside of the front cover.

Adaptive programming 11

Adaptive programming

Contents of this chapter

This chapter provides an overview of Adaptive programming and how to use the
Adaptive program.

Overview of Adaptive programming

Adaptive programming is used to customize the operation of a drive in case the drive
parameter setting is not sufficient. The Adaptive program is built with standard
function blocks included in the drive firmware. The program consists of the following
elements:

* A predefined list of inputs for getting information from the drive parameters to use
in the Adaptive program.

* A predefined list of outputs that defines parameters where it is possible to write
from the Adaptive program.

* A collection of states in which each state has its own block program, including
inputs, outputs and state transition elements

Standard function blocks (for example ADD, AND) are used to create an executable
Adaptive program. The maximum size of an Adaptive program is approximately 20
standard function blocks, depending on the block types used and the number of
predefined inputs and outputs utilized in the program. The standard function blocks
available are presented in Program elements (page 37). Numerical function blocks
use floating point numbers in the calculations.

Adaptive program is created using the Drive composer pro software with which the
program can be downloaded to the drive and started. By default, Adaptive program is
started when the drive is powered On, if the program already exists in the drive.

See the below sections on how to use the Adaptive program.

12 Adaptive programming

Creating a sequence program

Adaptive program consists of a collection of states for creating a sequence program.
When the program is running, there is always one state active and the corresponding
program is executed until another state is active. In addition to the states there is also
a base program that executes in parallel to the active state.

The state changes are controlled with state transition elements that can be connected
to function block outputs. State transition takes place after the full execution cycle of
the program during which the value of any corresponding output becomes true. In
case multiple state transitions are true during a single execution cycle, then the one
that is connected to the smallest numbered block is triggered. See the example
program execution.

See also Creating a sequence program on page 26 and Downloading the adaptive
program on page 28.

Connecting the Adaptive program to a drive application

Adaptive program is connected to a drive application through predefined system
inputs and outputs. Drive provides the available inputs and outputs and sets the
pointer parameter values accordingly based on the created program.

When the predefined output (value/bit pointer parameter) is written to from the
Adaptive program, the parameter is write protected and it is not changed in the
parameter table. The control panel and Drive composer pro shows a text in the
pointer parameter to indicate that the parameter is connected to the Adaptive
program.

Enabling/disabling Adaptive program

The Adaptive program function can be enabled or disabled with the drive parameter
96.70 Disable Adaptive program.

When Adaptive program is enabled, the program can be put to running mode in the
following conditions:

* when drive is powered On

» after a macro/user set is changed

» after a restore operation

» when a clear all and restore to defaults parameter operation (large parameter
operations) is done

* when a run command is given from the PC tool.

Adaptive programming 13

When Adaptive program is disabled, the situation is similar to a drive without
Adaptive program. The following operations are not possible:
» Adaptive program cannot be put to running mode when the drive is powered On

» Adaptive program cannot be edited or put to running mode from Drive composer
pro.

Executing the Adaptive program

Adaptive program is executed on firmware time level. The parameter 7.30 Adaptive
program status shows the status of the Adaptive program. The program can be edited
only when the drive is in Stopped state. While editing the program, the Start inhibit is
On, so that the drive cannot be started.

Note: For time level actual value, refer firmware manual(s) in the List of related
manuals.

The Adaptive program executes the function blocks in numerical order with all blocks
on the same time level. This cannot be changed by the user. The user can only do the
following tasks:

* build a program using the standard blocks and connections

» change the numbering of the blocks by moving them to different positions
» select the operation mode of the program (run/edit).

If Adaptive program in the drive is not compatible or corrupted, the fault 64A6h

Adaptive program is activated. The extension code of the fault explains the detail of
the problem with the Adaptive program.

Creating a backup/restore

Adaptive program can be saved to the backup file and restored. The program starts
automatically after the restore operation, unless the parameter 96.70 Disable
Adaptive program has such a value that after the restore operation the Adaptive
program shall not be put to running mode.

14 Adaptive programming

Using PC tool interface 15

Using PC tool interface

Contents of this chapter

This chapter describes the main user interface elements of PC tool for Adaptive
programming.

Adaptive programming user interface

The main user interface of Adaptive programming consists of the following sections:
* Base and sequence programs

* Program tools

* Functional blocks

* Inputs

* Outputs

» Sequence states

« State transition.

16 Using PC tool interface

The working area can be used either with tab or floating window. The selection
between tab and floating window can be made using Drive composer pro View menu.
The figure below shows the user interface with tabbed window.

Adaptive Programming {0}{1}
inanie onG

¥ Program tools ¥ _Sequence states Il ¥ Functional blocks:

') C - o BT Wisty Bide b e Ramp o — ano
Blank state
i || 2y [t » B P P P > : =
‘ O D . -) oo D e) reme) s o
Save Restors p B
Artnmetc biocks (3] Legieal bisees [10) Selzetion blocke (7) Comparisz.. Timer biee.. Opsration blsche (5)
¥V Base program
Constants 4
Parameters 4 Parameters
1
1o add 1o

on (@ y
o @ . D
i) Yo

Dl m » DIO1

Al
AR DIO2
DIC1
@ Start control
Diaz @ Speed control

Actual values Frequency control

Status > Sequence program Tarmiin namteal

Figure 1. Adaptive programming user interface

Using PC tool interface 17

Base and sequence programs

There are separate canvases for creating base and sequence programs. The
required canvas can be expanded or collapsed. See the above Adaptive
programming user interface.

* The base program canvas can be used to create a base program with function
blocks. The user can drag and drop the desired function blocks to build a base
program. See Creating a base program on page 24.

* The sequence program canvas can be used to create a sequence program. The
user can drag and drop the desired amount of states to build a sequence
program. See Creating a sequence program on page 26.

¥ Sequence states | ¥ Functional blocks

Square raat t AND o
|
pr D > inl > inl

P w2 D pr

Arithmatic blocks (3) Logical |

P Base program
¥ Sequence program

§1: State 1

-

Figure 2. Sequence program user interface

18 Using PC tool interface

Program tools

The program tools contains the following options:

* Undo: Erases the last change made and reverts it to an older state
* Redo: Reverses the undo or advances to a more current state

* Open: Opens a program from locally saved file

» Save: Saves the active program to a local file (.dcap format)

* Restore: Restores the default program.

See Adaptive programming user interface on page 16.

Functional blocks

Functional blocks of Adaptive programming are grouped into categories and are
shown on a horizontal shelf. The scroll bar shows category labels and indicates the
current view. The blocks are quickly accessible. The user can drag and drop the
required blocks to the canvas. See Adaptive programming user interface on page 16.
The functional block consists of the following categories:

» Arithmetic blocks

* Logical blocks

* Selection blocks

» Comparison blocks

« Timer blocks

» Operation blocks.

Using PC tool interface 19

Inputs
The pre-defined inputs are categorized into groups. Note that the available groups
and inputs are dependent on the drive type. Typical examples are:

« Constants

+ 1/0

* Actual values.
The same input can be used multiple times in the same program. Hovering over an

input on the shelf highlights every instance of that input on the canvas, so you can
easily locate where the input is used in the program.

[V impus | v _Base program

Constants

Parameters

1o Add
B .
o2 Zp zﬁ D
DIz B -
Di4
Al1
Az P

pio1

Dio2 BB

Figure 3. Inputs

20 Using PC tool interface

Editing the input labels
You can edit the input labels and add a comment.

1. Click[=nl label in the functional block input.

1 2
AND T_on
= DH
_m Inl . I _D In =Ll
= DIz D J = Numerical value
_m In2 Delay
Figure 4. Editing label
2. Edit the label and add the comment as desired.

o1
AND
=DH

Inl
—

..

Start button

DI2 (DI2)
This input is connected to
start button

2

T_on

'_D[n

= Numerical value

ey

— RO1

Figure 5. Editing label and comment

For more information on Input descriptions, refer firmware manual(s) in the List of

related manuals.

Using PC tool interface 21

Outputs
The pre-defined outputs are categorized into groups. Note that the available groups
and outputs are dependent on the drive type. Typical examples are:

* Parameters

+ 1/0

« Start control

* Speed control.

Each output can be used only once in the program. After you drag and drop an output
to the canvas, it is faded on the shelf.

raaml v Outputs |
‘_ Parameters

Add 1o

= AH
Start control
Inl = Speed refi

Speed control

Speed proportional
gain
Speed integration
time

B Acceleration time 1

= A2

[Z

Figure 6. Outputs

For more information on output descriptions, refer firmware manual(s) in the List of
related manuals.

22 Using PC tool interface

Sequence states

The sequence states contains a:

» Blank state: adds a new empty state to the sequence program.
You can drag-and-drop this empty state any number of times to the sequence
program canvas and rename the state in the program.

See Adaptive programming user interface on page 16.

State transition

State transition element is used to control the sequence of state transitions when
connected to boolean type block outputs. There can be several state transition
elements used in a single state.

| v satetransiton |
—
[4 -‘
L
1
AND Parameters

110
Inl
_— I:E Start control
—m In2 Speed control

- Freguency control

=D

Torque control

Limitations

Figure 7. State transition

Creating an Adaptive program 23

Creating an Adaptive
program

Contents of this chapter

This chapter describes how to create an Adaptive program and download the
program to the drive.

You can do the following:

* Create a base program using function blocks. See Creating a base program on
page 24.

* Optionally create a sequence program using states. See Creating a sequence
program on page 26.

* Download the program to the drive. See Downloading the adaptive program on
page 28.

24 Creating an Adaptive program

Creating a base program
To create a base program using function blocks, proceed as follows:

1. Drag-and-drop the desired function blocks to the base program canvas.

In drive ¥, Download o arive OnPC
¥ Program tools ¥ Sequence states | ¥ Functional blocks
4) C -_— R Switch value e Grester than Less than Equal Ton o Timer Setbis 07 et
Undo Redo Gpen p - JR) Jx b - P Jin)
“ Jm p Ja Ju Ja D ety) dety pres P > o
| O
Save o ~ < ~ ~ - L L
" R Artmatic blocks (3) Logical biocis (10) Selectan blocks (7). Comparia... Timer blog.. Gperation blocks (5)
[Fnpus |7 Base program
Constants 4
Parameters " . 4
Vo AND Tom ¥ Outputs
Parameters
o I = 5
DI2 m > 5
> inz : Dela, Start control
ois 4
—_ Speed control
oi4 2 Frequency control
A1 ED Torque control
A2 Limitations
pio1 (B Events
pio2 B Data storage
Actual values Process PID
Status P Sequence program

Figure 8. Function block

2. Drag-and-drop the desired inputs from the Inputs categories to the function
block(s).

(¥ nputs | ¥ _Base program

Constants
vV
Parameters . , 4
o AND Ton
= DH
on .. 2
o = N
[>) patay

Dis Zp oz 2
oi4 B
A B
A2
DIo1 5
pioz B

Actual values

Figure 9. Adding inputs

Creating an Adaptive program 25

3. Drag-and-drop the desired connections from the block outputs to other function
block(s).

¥ Base program

al 3
AND T_on
=on D
_m L1t / > In
=z D = Mumerical value D
| | In2 Delay

Figure 10. Adding outputs

4. Drag-and-drop the desired output from the Outputs categories to the function
block(s).

¥ Base program P State transition
| 4
A Parameters
1 2
AND Ton 1o
e Start control
_m Inl _ _D In
= D =L T D Ext1/Ext2 selection

Run enable 1

Ext1in1cmd

Ext1in2 cmd

Ext1in3 emd

Figure 11. Adding outputs

Similarly, you can create programs as desired by adding multiple function blocks
using inputs and outputs.

26 Creating an Adaptive program

Creating a sequence program

To create a sequence program using states, proceed as follows:
1. Open the Sequence Program canvas.

2. Drag-and-drop the desired amount of states to the sequence.

¥ Functional blocks

Switch value ;“""I‘" Greater than Less than Equal Ton T off
Blank state melenn
2 san 2 san D D D p b
PPy D5, By Py Dy Py
m In1 e e e _J Deay _J Deay
~ ~ ~ N
Arithmetic blocks (3) Logical blocks (10) Selection blocks (7) G

se program

quence program

§1:State 1

52 : State 2

Blank state

D

Figure 12. Sequence program states

3. Select the state and create desired block program for each state.

¥ Sequence program

: L
AND
S1:State 1 = DH|
= InL
=2 D
= In2
52 State 2
2
S3: State 3 =T
= Numerical value =
750 IS

Figure 13. Block program in selected state

Creating an Adaptive program 27

4. Drag-and-drop the desired state transitions to each state.

» Base program

'V State transition

Sequence program
M -

S1: State 1 AND Parameters
e 1o
In1
= D Start control
_E n2 : Speed control

Speed ref1

Speed proportional
gain

S3: State 3 2 Speed integration
time

Connect = Speed reft
= Mumeriealvatue:
n

Acceleration time 1

Figure 14. State transitions

28 Creating an Adaptive program

Downloading the adaptive program

After creating a base program and optionally a sequence program, you can download
the program to a drive and run the program.

1. Click Download to drive.

¥ Program tools ¥ Functional blocks
=i sreater than. exx than ual on imer
ylclm I TE

Undo Redo Open P et Ja Ja Ja ;
Dol ol Dl

P im1

Save Restore . A ly
Arithmetic blocks () Logical blocks (10) Selection blocks (7) <
[V pus | ¥ Base program
Constants 4
Parameters 4
1 2

[lle] AND Ton

=D
Actual values _m - _D " T

N]
Status =2 D = Mumerical value.
| In2 Delay

Data storage

P Sequence program

Figure 15. Downloading to drive

Creating an Adaptive program 29

The program is downloaded to the drive.

In drive
¥ Program tools
Save
¥ Base program
1 2
AND T_on
=D
| = = Extlin1 cmd
B. D.
=Dz D = Mumerical value
—B In2 m Delay

P Sequence program

Figure 16. Program downloaded to a drive

2. Inthe Program tools, click Run program to start the program.

3. Open the Sequence program canvas to view the sequence program.

EEETTED B

In drive

¥ Program tools

b Base program
¥ Sequence program

SN S : State 1 AND
=D

ED..
o Eﬂ
—@ n2
S2:State 2 —_—
S53: State 3 2
Comnect | — e et

= Mumerical valus

In

Figure 17. Sequence program

30 Creating an Adaptive program

After downloading the program to the drive, you can

click Edit program to stop the program and start editing
or

click Save to save the adaptive program to a local file (.dcap format).

Program elements 31

Program elements

Contents of this chapter

This chapter describes system inputs, outputs and function blocks available in the
master control program for Adaptive programming.

Note: The information in this chapter is drive-specific and should be confirmed from
the respective firmware manual(s).

32 Program elements

System inputs

The below mentioned system inputs are examples only.

Parameter inputs

System inputs have new type of parameter inputs.

» Boolean parameter input is for reading the value of a bit from a parameter (for
example command or status word)

* Numeric parameter input is for reading the value of a parameter.

Constants

Numerical value m

Boolean value

Parameters

Parameter value m

Parameter bit

Constants

Constants consists of Numerical and Boolean constant input values. These constant
inputs can be reused in different blocks by changing their values.

For example: Numerical value and Boolean value.

Inputs/outputs
Analog inputs

Analog inputs can be filtered, inverted or scaled with parameter configuration (i.e. not
in Adaptive programming).

Analog inputs can be independently set as voltage or current input by a jumper. Each
input can be filtered, inverted or scaled.

The drive can be set to perform an action if the value of an analog input moves out of
a predefined range.

Digital inputs and outputs
Digital inputs and outputs can be set as either an input or an output.

Digital input/output DIO1 can be used as a frequency input, DIO2 as a frequency
output.

For example: Al1, Al2, DI1, DI2, DIO1, DIO2 etc.

Program elements 33

Actual values
Basic signals for monitoring the drive.

For example: Motor speed, Output frequency, Motor current and so on.

Status
Drive status word.

Example: Enabled, inhibited, Ready to start etc.

Data storage

Data storage parameters are reserved for data storage. These parameters are
unconnected by default and can be used for linking, testing and commissioning
purpose.

For example: Data storage 1 real32, Data storage 2 real32 etc.

For more information on Input descriptions, refer firmware manual(s) in List of related
manuals.
System outputs

The below mentioned system outputs are examples only.

Parameter outputs

System outputs have a new type of parameter outputs.

* Boolean parameter output is for writing a Boolean block output to a parameter.
The parameter gets either value one or zero.

* Numerical parameter output is for writing a Numerical block output to a parameter.

Parameters

n Parameter value
Parameter value

You can select the parameter for the input or output either from a list or type the
parameter manually.

34 Program elements

Reading and writing parameters in the drive

The block output value is written to the parameter only when the value changes. The
written parameter values are not saved over power down of the drive.

For efficiency, the parameter reading and writing is made in the internal format. In
case of some parameters, it is possible that the block input shows a different value
than the corresponding parameter.

/10

Analog outputs

Analog outputs can be filtered, inverted or scaled with parameter configuration (i.e
not in Adaptive programming).

Relay outputs

The signal to be indicated by the outputs can be selected by parameters.

Digital inputs and outputs

Digital input/output DIO1 can be used as a frequency input, DIO2 as a frequency
output.

For example: AO1, AO2, RO1, RO2, RO3, DIO1 and DIO2.
Start control

Operating mode

The two external control locations, EXT1 and EXT2, are available. The user can
select the sources of the start and stop commands separately for each location.

Run enable

The source of the external run enable signal. If the run enable signal is switched off,
the drive will not run.

Fault reset

The drive can automatically reset itself after overcurrent, overvoltage, undervoltage
and external faults.

For example: Ext1/Ext2 selection, Run enable 1, Fault reset etc.

Speed control

The output of the speed reference selection block. The motor follows a speed
reference given to the drive.

For example: Speed ref1, Speed ref2 and Speed additive 1.

Program elements 35

Frequency control

The output of the frequency reference selection block. The motor follows a frequency
reference given to the drive. Frequency control is only available in scalar motor
control mode.

For example: Frequency ref1, Frequency ref2 etc.

Torque control

The output of the torque reference selection block. Motor torque follows a torque
reference given to the drive.

For example: Torque ref1, Torque ref2 and Torque additive 2.

Limitations
Defines the source of maximum torque limit for the drive.

For example: Minimum torque 2 and Maximum torque 2.

Events
Defines the source of external events.

For example: External event 1, External event 2 etc.

Process PID
Selects the source that determines whether process PID parameter set is used.
For example: Set 1 setpoint 1, Set 1 feedback 1, Set 1 tracking mode etc.

For more information on output descriptions, refer firmware manual(s) in List of
related manuals.

36 Program elements

Function block specifications
You can adjust the number of inputs by dragging the bottom line in the function block.

Note: Function blocks which do not contain bottom line cannot be adjusted.

Abs

Calculates absolute value.
1

Abs

In D

Output:
Name Type Default value
Out Float 0
Input: 1
Name Type Default value Function
In Float 0 Block input

Block function
Block calculates absolute value of value in input /n. Output =1 In I.
Exceptional cases

Block input is not connected. Input has a default value.

Add

Adds n inputs and outputs result.

Program elements 37

Add Add
In3
In4
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1-1n8 Float 0 Provides values to add

Block function
Output = In1 + In2 +...+ In8

Exceptional cases

* Inputs which are not connected are added as default value.

» Overflow to positive side: output is limited to Max float.

» Overflow to the negative side: output is limited to negative Max float.

* Underflow: value 0 is kept at output.

38 Program elements

AND

Performs logic AND.

L
AND

AND

In§
Ing
Output
Name Type Default value
Out Boolean 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1 - In8 Boolean N/A Block inputs

Block function

Function block performs logical conjunction operation with inputs.

Out=In1&In2 & ... & In8.

The truth table of AND operation is below. Example uses two inputs. Same logic can
be applied to other inputs. Outputis 1 (true) if and only if all inputs have value 1 (true).

In1 In2 Out
0 0 0
0 1 0
1 0 0
1 1 1

Exceptional cases

* Inputs which are not connected have no effect on the output.

* If some inputs are connected and others are not, only the connected inputs

are evaluated.

Bit get

Program elements 39

Performs logic OR operation with selected bits from inputs.

£5

58

Bit get Bit get
5\:55I'_E> Bil 'aID
./: Bitzel3
Bitsel &
_/: Bit sel
/ Bitsel8
Output
Name Type Default value
Out Boolean 0
Inputs: 2-9
Name Type Default value Function
In Float 0 Value to read bits
Bitsel 1-8 Float N/A Provides number of bits to
be selected from input value.

Block function

Basic functionality of the block is to get the value of the defined bit. In case several
bits are defined then values of these bits are retrieved and OR operation is executed
with these to get the block output value.

Bits 0 - 15 can be selected.

For example, in case only Bit sel 1 is connected then Out = val1. If Bit sel 1 and 2 are
connected then Out = val1 OR val2, where val1 - value of bit selected by Bit sel 1
input and val2 - value of bit selected by Bit sel 2 input.

40 Program elements

Exceptional cases

Bit sel input is not connected. Bit defined by this input is skipped.
If entered bit sel value > 15, bit 15 is selected.

If bit sel < 0 then bit 0 is selected.

If input In is not connected, it gets default value.

An input In value that is either negative or larger than (2431)-1 is set to default
value 0.

Program elements 41

Bitwise AND
ANDs the lowest 16 separate bits of the input values and outputs the combination as
float.
1 g
Bitwise AND Bitwise AND
B § I
In2 4 In2
J Ind
InG
In8
Output
Name Type Default value
Out Float 0
Inputs: 2-8
Name Type Default value Function
In1 - In8 Float N/A Provides an input value.

Block function

Connected inputs are rounded to the nearest integer after which the AND operation is
performed on them. The lowest 16 bits of the result is taken, converted to float and
written to output.

Exceptional cases

» An input value that is either negative or larger than (2231)-1 is set to default value

0.

« Ifonly 1 input is connected then that input is rounded and sent to the output.

42 Program elements

Bitwise OR

ORs the lowest 16 separate bits of the input values and outputs the combination as
float.

1 1
Bitwise OR Bitwise OR
B
Output
Name Type Default value
Out Float 0
Inputs: 2-8
Name Type Default value Function
In1 - In8 Float 0 Provides an input value.

Block function

Inputs are rounded to the nearest integer after which the OR operation is performed
on them. The lowest 16 bits of the result is taken, converted to float and written to
output.

Exceptional cases

* Aninput value that is either negative or larger than (2231)-1 is set to default value
0.

* If only 1 input is connected then that input is rounded and sent to the output.
» Disconnected inputs have default value 0.

Program elements 43

Bitwise XOR
XORs the lowest 16 separate bits of the input values and outputs the combination as
float.

1
Bitwise XOR

Output
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
In1 Float 0 Provides an input value.
In2 Float 0 Provides an input value.

Block function

Inputs are rounded to the nearest integer after which the XOR operation is performed
on them. The lowest 16 bits of the result is taken, converted to float and written to
output.

Exceptional cases

» An input value that is either negative or larger than (2231)-1 is set to default value
0.

« Ifonly 1 input is connected then that input is rounded and sent to the output.

44 Program elements

Divide
Divides block inputs.

1
Divide

Output:
Name Type Default value
Out Float 0

Inputs: 2
Name Type Default value Function
Num Float 0 Dividend
Denom Float 0 Divisor

Block function
Output =1In1/1In2
Dividing by zero will set block output to zero.

Exceptional cases

* Inputs which are not connected are assigned with default values.

» Overflow to positive side: output is limited to Max float.

» Overflow to the negative side: output is limited to negative Max float.

* Underflow: value 0 is kept at output.

Equal

Checks if values at inputs are equal.

1
Equal

[

(5]

Program elements 45

Output
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
A Float 0 First comparison
value
B Float 0 Second comparison
value

Block function

Block compares the whole number parts of numbers in A and B. Behavior of the block
can be seen in table below.

Condition Out
A and B are equal 1
A and B are not equal 0

Inputs are rounded before comparison. Only whole number part of the inputs are

compared.

For example, if value 70.5 is in input, it will be compared as 71. If value 70.4 is in input
it will be compared as 70. Rounding of negative numbers works as illustrated in the

following example. -70.4 rounds to -70. -70.5 rounds to -71.

Exceptional cases

Inputs which are not connected will have a default value.

46 Program elements

Filter

Filters input for a defined length of time and then outputs it.
1

Filter

Output:
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
In Float 0 Signal to be filtered
Time Float 0 Filter time constant
in seconds

Block function

This block is a single pole low - pass filter. Input signal In is filtered using provided
time constant Time. The following equation is used for internal calculations.

Coefficient = TimeLevel / (TimeLevel + Time)
Out[i] = Coefficient * (In[i] - Out[i - 1]) + Out[i - 1]
Where:

Variable Function

Out [i] Current calculated output value

Out[i - 1] Previous output value of the filter from previous time cycle
In [i] Current input value

Timelevel Value of timelevel that the program is running at.

This function is a discrete model for single pole low - pass filter.

Exceptional cases

* Time constant Time < timelevel or negative constant is provided. Filter does
not filter input signal. Input is written to output unaltered. Time constant is
evaluated to 0.

* Inis not connected - Input gets default value.
« Time constant is not connected - assumed to have default value.

Program elements 47

Greater than

Comparison block. Compares values at its inputs to see if first value is greater than
second. Comparison accuracy is set by the user.
1

Greater than

>

m

Output
Name Type Default value
Out Boolean 0
Inputs: 3
Name Type Default value Function
A Float 0 Provides first
comparison value
B Float 0 Provides second
comparison value
Hyst Float 0 Value B is
subtracted

Block function

Takes two inputs to compare with one another, A and B, and a third input that
manipulates input B.
First:

« If A>B, outputis setto 1.

Second (if first is not true):

* If A < (B- Hyst) then output is reset to 0.

Third (if neither are true):
* Previous output value is kept at block output.

Exceptional cases
* When either A or B input is not connected then output is set to default value 0.
* A disconnected Hyst input has value 0.

48 Program elements

Less than

Comparison block. Compares values at its inputs to see if first value is smaller than
second. Comparison accuracy is set by the user.

1
Less than

>

Hyst

Output
Name Type Default value
Out Boolean 0
Inputs: 3
Name Type Default Function
value
A Float 0 Provides first
comparison value
B Float 0 Provides second
comparison value
Hyst Float 0 Value that is added
toB

Block function

Takes two inputs to compare with one another, A and B, and a third input that
manipulates input B.
First
« IfA<B,outputissetto1.
Second (if first isn't true)
* If A> (B+ Hyst) then output is reset to 0.
Third (if neither are true)
* Previous output value is kept at block output.
Exceptional cases
* When either A or B input is not connected then output is set to default value 0.
* Adisconnected Hyst input has value 0.

Limit

Program elements 49

Takes an input that is limited and outputs the value after limiting it.

1
Limit

Output:
Name Type Default value
Out Float 0
Inputs: 3
Name Type Default value Function
In Float 0 Value to be limited.
Max Float 3.4028235e+38 Maximum value In is
limited
Min Float - 3.4028235e+38 Minimum value Inis
limited.

Block function

Inis written to the output as long as it is within the value range of Max and Min. When
In exceeds or falls below the respective limit values, it will first be capped to the

appropriate limit value and then written to the output. /n is evaluated first against Max.
If Max is not limiting, then In is evaluated against Min.

Exceptional cases
* If Inis not connected then the block output is zero.

* If Max or Min input is not connected, then the highest and lowest float values
are set as the default values for Max or Min.

50 Program elements

Max

Compares n inputs and outputs the largest input value.

1 2

in4

5
&

Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1-1n8 Float 0 Provides an input

value to compare

Block function
Compares all input values to determine the highest one and outputs it.
Exceptional cases

If some inputs are connected and other inputs are not connected, only the connected
inputs are evaluated.

Min

Compares n inputs and outputs the smallest input value.

Program elements 51

In2 In2
Ind
In5
In§
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In-1n8 Float 0

Provides an input
value to be compared

Block function

Compares all input values to determine the lowest one and outputs it.

Exceptional cases

If some inputs are connected and others are not connected, only the connected

inputs are evaluated.

52 Program elements

Multiply

Multiples n inputs and outputs the result.

1

Multiply Multiply
Inl Inl
In3
In§
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1-1n8 Float N/A Provides values for multiply

block to perform multiplication

Block function
Out=1In1*In2 *...* In8

Exceptional cases

* Inputs which are not connected are not multiplied. If one input is connected, its

value is at output.

* Allinputs are not connected: output is assigned a default value.

» Overflow to positive side: output is limited to Max float.

» Overflow to the negative side: output is limited to negative Max float.

* Underflow: value 0 is kept at output.

NOT

Inverts value at input.
1

Program elements 53

NOT
w L)
Output
Name Type Default value
Out Boolean 1
Input: 1
Name Type Default value Function
In Boolean 0 Block input

Block function

Function block performs inversion.

In Out
1

0
1 0

Exceptional cases

In case a block input is not connected then its value is set to 0 by default.

54 Program elements

OR

Performs logic OR.

OR

OR

Ind

Output
Name Type Default value
Out Boolean 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1 - In8 Boolean 0 Block inputs

Block function

Function block performs logical or operation with inputs. Out=1In1vIn2v ... v In8.

The truth table of OR operation is below. Example uses two inputs. Same logic can
be applied to other inputs. Output has value 1 when one of the inputs have value 1.

Output is 0 if and all inputs have value 0.

In0 In1 Out
0 0 0
0 1 1
1 0 1
1 1 1

Exceptional cases

If some inputs are connected and others are not, only the connected inputs are

evaluated.

Program elements 55
Pl
Pl controller.
PI
! Setpoint

. D

4 Actua

b

_/ Gain

_/ Integrati...
time

> Track

4 Track
reference
4 Max

/' Min

Output:

Name Type Default value
Out Float 0

Inputs: 8

Name Type Default value Function

Setpoint Float 0 Desired output value
Actual Float 0 Actual output value
Gain Float 0 Proportional gain (Kp)
Integration Float 0 Integration time in
time seconds (s)

Track Boolean 0 Enables tracking mode
Track Float 0 Output value in
reference tracking mode

Min Float - 3.4028235e+38 Maximum output value
Max Float 3.4028235e+38 Minimum output value

56 Program elements

Block function

Calculates the P and | terms based on error, proportional gain and an integral
coefficient. The sum of P and | is written to the output. Sets output to tracking
reference value when tracking is enabled and limits the output when needed. In these
cases, the | term value is maintained directly in reference to the tracking reference or
limit values to provide smooth transfer/anti-windup. Pl output continuous changing
from track reference value when track is disabled. In the limitation, the value is
evaluated first against Max limit. If Max is not limiting, then the value is evaluated
against Min limit.

Exceptional cases

* In case a block input is not connected then its value is set to default value.

* When either Setpoint, Actual or Gain are not connected then outputis set to 0.
When Track is enabled and Track reference is not connected then output is
set to 0.

* When Integration time input is not connected then integral component is reset
and PI block functions as a P controller.

* When Min or Max is not connected, the default values of these inputs are
used.

Ramp

Program elements 57

Changes the output value to match the input value at a defined rate of change.

T
Ramp

In

D

Increase

Decrease

Track
referance

Max

Output:
Name Type Default value
Out Float 0
Inputs: 7
Name Type Default value Function
In Float 0 Reference value to
ramp to output
Increase Float 0 The amount of output
increased per second
Decrease Float 0 The amount of output
decreased per second
Track Boolean 0 Enables tracking mode
Track Float 0 Output value in tracking
reference mode
Max Float 3.4028235e+38 Maximum value block
output will be limited
Min Float - 3.4028235e+38 Minimum value block

output will be limited

58 Program elements

Block function

If output value does not equal input reference, then the output value starts changing
towards the input value.

The amount of change per second is defined by the inputs for increasing and
decreasing the output. Sets output to track reference value when track is enabled.
Output is limited to maximum and minimum limit values. In the limitation, the output is
evaluated first against Max limit. If Max is not limiting, then the output is evaluated
against Min limit. Ramp output continues changing from tracking reference value
when tracking is disabled.

Exceptional cases
* In case a block input is not connected, then its value is set to default value.

* In case, either maximum or minimum limit is disconnected, then their values
will be defaulted to the highest and lowest value representable by a float.

* In case, Increase or Decrease input is disconnected then Output = /n when
trying to ramp with the disconnected input. If the other input is connected then
ramping with it behaves as normal.

* Incase, Ininput is disconnected then Output = 0.

Program elements 59

Select boolean

Outputs the Boolean input value that is selected by the selector input.

1 2
Select Select
boolean boolean
InZ In2
In5
In§
Output
Name Type Default value
Out Boolean 0
Inputs: 3-9
Default inputs: 3
Name Type Default value Function
Sel Float 0 Selects input value to
connect to output
In1-1n8 Boolean 0 Provides selectable input
value for the block.

Block function

This is a selector block that can have different input connected to output. Input to be
connected is selected by Selinput.

When Sel = 1 then Out = In1, when Sel = 2 Out = In2 etc.
When Sel = 8 Out = In8.
Allowable value range for Sel input is 1 <= Sel <= 8.

Exceptional cases
* When Sel input is out of its allowable range then Out = 0.
* Inputs which are not connected will have a default value.

60 Program elements

Select value

Outputs the float input value that is selected by the selector input.

A
Select value

2

Select value

Ind
Ins
In§
Output
Name Type Default value
Out Float 0
Inputs: 3-9
Default inputs: 3
Name Type Default value Function
Sel Float 0 Selects input to be
connect to output
In1-1n8 Float 0 Provides selectable input
value for the block

Block function

This is a selector block that can have different input connected to output. Input to be
connected is selected by Sel input.

When, Sel = 1 then Out = In1, and Sel = 2 then Out = In2 and etc.

When, Sel = 8 then Out = In8.

Allowable value range for Sel input is 1 <= Sel <= 8.

Exceptional cases

* When Sel input is out of its allowable range then Output = 0.

* Inputs which are not connected will have a default value.

Set bits 0-7

Updates bits 0-7 of the input value.

L
Set bits 0-7

In

Program elements 61

BitD
Bit2
Bird
Bith
Output
Name Type Default value
Out Float 0
Inputs: 9
Name Type Default value Function
In Float 0 Value to be updated
Bit0 Boolean N/A Value of bit 0 (lowest)
Bit1 Boolean N/A Value of bit 1
Bit2 Boolean N/A Value of bit 2
Bit3 Boolean N/A Value of bit 3
Bit4 Boolean N/A Value of bit 4
Bit5 Boolean N/A Value of bit 5
Bit6 Boolean N/A Value of bit 6
Bit7 Boolean N/A Value of bit 7

Block function

Rounds the float input to closest integer and updates bits 0-7 of the integer value
based on the boolean inputs Bit0-Bit7. Takes then the lowest 16 bits of the integer

result and converts the value to float and writes it to output.

Exceptional cases

* Aninput value that is either negative or larger than (2*31)-1 is set to default

value 0. Bits 0-7 of the default value are updated.

» If Boolean input is not connected, the value of that bit is not updated.

62 Program elements

Set bits 8-15
Update bits 8-15 of the input value.
1

Set bits B-15

In

D)
Bit8

Output
Name Type Default value
Out Float 0

Inputs: 9
Name Type Default value Function
In Float 0 Value to be updated
Bit8 Boolean N/A Value of bit 8
Bit9 Boolean N/A Value of bit 9
Bit10 Boolean N/A Value of bit 10
Bit11 Boolean N/A Value of bit 11
Bit12 Boolean N/A Value of bit 12
Bit13 Boolean N/A Value of bit 13
Bit14 Boolean N/A Value of bit 14
Bit15 Boolean N/A Value of bit 15

Block function

Rounds the float input to closest integer and updates bits 8-15 of the integer value
based on the Boolean inputs Bit8-Bit15. Takes then the lowest 16 bits of the integer
result and converts the value to float and writes it to output.

Exceptional cases

* Aninput value that is either negative or larger than (2*31)-1 is set to default
value 0. Bits 8-15 of the default value are updated.

* If Boolean input is not connected, the value of that bit is not updated.

Program elements

Square root

Calculates square root of value at input.
a5

Square root

P]

63

Output
Name Type Default value
Out Float 0
Inputs: 1
Name Type Default value Function
In Float 0 Block input

Block function
Block calculates square root of input. Out = y/In

Exceptional cases
* When value at the input is negative (In < 0), then Out =0

64 Program elements

SR
SR trigger is used to store Set value.
1

SR

i
m

>

Rezet
Output
Name Type Default value
Out Boolean 0
Input: 2
Name Type Default value Function
Set Boolean 0 Set input
Reset Boolean 0 Reset

Block function

This is SR latch. Output keeps it value once set by Set input. Value at output is reset
to 0 when Reset = 1. Value at output depends on previous output value. See truth
table.

Previous Out Reset Set Current Out
0 0 0 0
0 0 1 1
X 1 X 0
1 0 0 1
1 0 1 1

Exceptional cases
« If Setis not connected, it is assumed to have default value.
« If Reset is not connected, it is assumed to have default value.

Subtract

Performs subtract.

£
Subtract

[

In2

Program elements 65

Output:
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
In1 Float 0 Value to subtract from
In2 Float 0 Value to be subtracted

Block function

Output =In1 - In2

Exceptional cases

* In case both inputs are not connected, output has a default value.

* Inputs which are not connected are assigned default value.

» Overflow to positive side: output is limited to Max float.

» Overflow to the negative side: output is limited to negative Max float.
* Underflow: value 0 is kept at output

66 Program elements

Switch boolean

Outputs the input Boolean value whose enable value is set first.

1 2
Switch Switch
boolean boaolean

Sell Sell

> >

Default Sel2

In3
Seld
Ind

Sels
Selb

In§

Default

Output:

Name Type Default value
Out Boolean 0

Program elements 67

Inputs: 3-15
Default inputs: 3
Name Type Default value Function
Sel1 - Sel7 Boolean 0 Selects/deselects input
value.
In1-1In7 Boolean 0 Provides selectable input
value for the block.
Default Boolean 0 Default output when Sel
is not active for any
inputs.

Block function

The value written to the output is “In X” value whose “Sel X” is set first. If no “Sel X" is
set then Default input is written to the output.

Example:

Multiple Sel inputs have value 1. Inputs are evaluated from top to bottom. In case of
multiple In, Sel pairs In1, Sel1 is checked first followed by /In2, Sel2 and etc. In case
Multiple Sel inputs are 1 the first one will be connected to output. In this example, if
both Sel/1 and Sel 2 are 1 then In1 is connected to output.

Exceptional cases

Inputs which are not connected will have a default value.

68 Program elements

Switch value

Outputs the input float value whose enable value is set first.

i b
Switch value Switch value

Default Sel2

In2

In3

In4
Sels
InS

Self

w
o

Default

Output:

Name Type Default value
Out Float 0

Program elements 69

Inputs: 3-15
Default inputs: 3
Name Type Default value Function
Sel1 - Sel7 Boolean 0 Selects/deselects input
value
In1-1In7 Float 0 Provides selectable
input value for the block
Default Float 0 Default, that is,
connected to output
when no Selis 1

Block function

The value written to the output is “In X” value whose “Sel X” is set first. If no “Sel X" is
set, then the Default input is written to the output.

Example:

Multiple Sel inputs have value 1. Inputs are evaluated from top to bottom. In case of
multiple In, Sel pairs In1, Sel1 is checked first followed by In2, Sel2 etc. In case
Multiple Sel inputs are 1, the first one will be connected to output. In this example, if
both Sel/1 and Sel2 are 1 then In7 is connected to output.

Exceptional cases
* Inputs which are not connected will have a default value.

70 Program elements

Timer

Runs through states at the speed of timer values defined at the inputs. Outputs the

current state. The timers can be paused and the state can be reset.

54 1

Timer Timer

> Enable > Enable

b
P
-
..-: meg
Output
Name Type Default value
Out Float 1
Inputs: 4-10
Default inputs: 4
Name Type Default value Function
Enable Boolean 0 Enables/disables timer.
Reset Boolean 0 Resets time when rising
edge is detected on input.
Time1 - Float 0 Provides time in state,
Time8 time value is in seconds.

Program elements 71

Block function

Timer block is a state machine that goes through states. The time block stays in each
state is specified by time inputs Time1 - Time8. Minimal number of time inputs is 2.
When timer starts, it is in state 1 and block output is 1. Timer stays in this state for the
time specified in input Time1. When this time is passed, the timer block switches to
the next state. This behavior of normal operation is illustrated below. Reset is false,
enable is true. Time values Time1 = 2s, Time2 = 1s and Time3 = 2s are used in all
examples below.

Reset
F F F F F F F
Enable T T T T T T T
Out 1 1 2 3 3 1 1
Time, s 1s 2s 3s 4s 5s 6s 7s "

Timer block can be paused by setting enable to false. During which the block stays in
the state that it was at the time. When Enable is set to true again, timer resume its
work from where it left off. The effect of enable input is illustrated below.

Reset
F F F F F F F
Enable T T T F F T T
Out 1 1 2 2 2 3 3
Time, s 1s 2s 3s 4s 5s 6s 7s "

Timer block can be reset using the reset input. When rising edge is detected at the
reset input, block goes to state 1 if it is a valid state. If time in state 1 is specified to be
less than the time level that the program is running at, timer block will find the next
valid state to go to starting from state 1. If all states have delay times that are less
than the time level, block will go to state 1. The reset of the timer block happens also
in case the block is not enabled.

72 Program elements

The reset behavior under normal circumstances is illustrated below. In this example
there are 3 time inputs and they all have valid delay times specified.

Reset
F F F F F F F
Enable T T T F F T T
Out 1 1 2 2 2 3 3
Time, s 1s 2s 3s 4s 5s 6s 7s g

Block only reacts to rising edge. The reset behavior is illustrated below. The rising
edge occurs at time 4s. Reset input is left true but this does not interfere with block
operation. At time 5s block is in normal operation mode again.

Reset
F F F T T F F
Enable T T T T T T T
Out 1 1 2 1 1 2 3
Time, s 1s 2s 3s 4s 5s 6s 7s "

Exceptional cases

* Not connected inputs get default values assigned.

* When specified time in a state is smaller than the value of the time level that the
program is running, the state will be skipped.

* When all time inputs have times specified that are smaller than the time level
value, the block output is set to default value.

Trigger down

Falling edge detection.

1

Trigger down

Program elements 73

Output
Name Type Default value
Out Boolean 0
Input: 1
Name Type Default value Function
In Boolean 0 Block input

Block function

Function block performs falling edge detection. Output is 1 when input previous value
is 1 and current value is 0. Otherwise output is 0.

Exceptional cases
* Ifinput Inis not connected, it will get the default value.

» Ifinput/n has value 0 at the first execution cycle of the block, the output of the
block is set to 0.

74 Program elements

Trigger up

Rising edge detection.

1

Trigger up
w [
Output
Name Type Default value
Out Boolean 0
Input: 1
Name Type Default value Function
In Boolean 0 Block input

Block function

Function block performs rising edge detection. Output is 1 when block input previous
value is 0 and current value is 1. Otherwise output is 0.
Exceptional cases

* When input In is not connected, it will get the default value.

« Ifinput /In has value 1 at the first execution cycle of the block, the output of the
block is set to 1.

T off

Turns off the delay.
iy

T_off

>

Diefay

Program elements 75

Output
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
In Boolean 0 Provides boolean value
Delay Float 0 Provides the time value in

seconds to delay outputting
0

Block function

If the value of Inis 1 then it is written to the output. If the value of Inis 0 it is written to
the output only after a time period is passed which is defined by Delay. Delay is
limited to 2097152 seconds.

Exceptional cases

In case a block input is not connected, then its value is set to default value.

76 Program elements

T on

Turns on the delay.
1

T_on

[

Delay
Output
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
In Boolean 0 Provides boolean
value.
Delay Float 0 Provides time value
in seconds to delay
outputting 1.

Block function

If the value of In is 0 then it is written to the output. If the value of Inis 1, it is written to
the output only after a time period is passed which is defined by Delay. Delay is
limited to 2097152 seconds.

Exceptional cases

In case a block input is not connected then its value is set to default value.

XOR
XOR inputs.

1
XOR

Program elements 77

Output:
Name Type Default value
Out Boolean 0

Inputs: 2
Name Type Default value Function
In1 Boolean 0 Block input
In2 Boolean 0 Block input

Block function

Function block performs logical XOR operation with inputs.

The truth table of XOR operation:

In1 In2 Out
0 0 0
0 1 1
1 0 1
1 1 0

Output has value 1 when the inputs have different values, otherwise the output is 0.

Exceptional cases

In case a block input is not connected, the default value of the input is used in the

operation.

78 Program elements

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting
the type designation and serial number of the unit in question. A listing of ABB sales,
support and service contacts can be found by navigating to
www.abb.com/searchchannels.

Product training
For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Navigate to
new.abb.com/drives/manuals-feedback-form.

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at
www.abb.com/drives/documents.

http://www.abb.com/searchchannels
http://new.abb.com/service/training
http://new.abb.com/drives/manuals-feedback-form
http://www.abb.com/drives/documents

Contact us

www.abb.com/drives
www.abb.com/drivespartners

3AXD50000028574 Rev C (EN) 2016-03-14

viy AL HRED
Power and productivity
for a better world™ " I. I'

	List of related manuals
	Introduction to the guide
	Contents of this chapter
	Applicability
	Compatibility
	Safety instructions
	Target audience
	Purpose of the guide
	Contents of the guide
	Related documents

	Adaptive programming
	Contents of this chapter
	Overview of Adaptive programming
	Creating a sequence program
	Connecting the Adaptive program to a drive application
	Enabling/disabling Adaptive program
	Executing the Adaptive program
	Creating a backup/restore

	Using PC tool interface
	Contents of this chapter
	Adaptive programming user interface
	Base and sequence programs
	Program tools
	Functional blocks
	Inputs
	Editing the input labels

	Outputs
	Sequence states
	State transition

	Creating an Adaptive program
	Contents of this chapter
	Creating a base program
	Creating a sequence program
	Downloading the adaptive program

	Program elements
	Contents of this chapter
	System inputs
	Parameter inputs
	Constants
	Inputs/outputs
	Analog inputs
	Digital inputs and outputs

	Actual values
	Status
	Data storage

	System outputs
	Parameter outputs
	Reading and writing parameters in the drive

	I/O
	Analog outputs
	Relay outputs
	Digital inputs and outputs

	Start control
	Operating mode
	Run enable
	Fault reset

	Speed control
	Frequency control
	Torque control
	Limitations
	Events
	Process PID

	Function block specifications
	Abs
	Add
	AND
	Bit get
	Bitwise AND
	Bitwise OR
	Bitwise XOR
	Divide
	Equal
	Filter
	Greater than
	Less than
	Limit
	Max
	Min
	Multiply
	NOT
	OR
	PI
	Ramp
	Select boolean
	Select value
	Set bits 0-7
	Set bits 8-15
	Square root
	SR
	Subtract
	Switch boolean
	Switch value
	Timer
	Trigger down
	Trigger up
	T_off
	T_on
	XOR

	Further information
	Product and service inquiries
	Product training
	Providing feedback on ABB Drives manuals
	Document library on the Internet

